APPENDIX G

SEWER STUDY

Sewer Capacity Study

For

1400 Bristol St N Newport Beach, CA 92660

August 11, 2023

David Sloan, P.E. Registered Civil Engineer No. <u>82595</u> Exp.: <u>9/30/24</u>

Prepared for:

The Picerne Group

5000 Birch St, Suite 600 Newport Beach, CA 92660 (949) 487-6262 Prepared by:

Tait & Associates, Inc. 701 N. Parkcenter Drive

Santa Ana, CA 92705 (714) 560-8200

TAIT JOB # SP9003

1400 Bristol St N Newport Beach, California

Table of Contents

Section 1	Study Purpose	!
Section 2	Existing Site Location & Information2)
Section 3	Proposed Site Description3	;
Section 4	Sewer System Layout 4	ŀ
4.1 E	xisting Sewer System	ŀ
4.2 P	Proposed Sewer System	,
Section 5	Design Criteria5	,
5.1 S	ewer Design Criteria6	;
5.2 A	vailable Pipe Capacity	,
5.3 E	xisting Flow Rates	;
5.3 P	Proposed Flow Rates)
Section 6	Results and Conclusion 12)
Appendix	A – Vicinity Map A	١
Appendix	B – Sewer Design Criteria B	;
Appendix	C – Existing Flow Calculations C	
Appendix	D – City of Newport Beach SMP ExhibitsD)

Section 1 Study Purpose

The purpose of this study is to provide a site-specific sewer capacity study to assess the amount of wastewater generated by the proposed development of the project site at 1400 Bristol St N, Newport Beach, CA. This sewer study will assess if the city sewer system capacity is sufficient when the project site is redeveloped from a commercial site to a residential site and if the change in sewer usage complies with the City of Newport Beach's design criteria indicated in the City's Sewer Master Plan (SMP).

Section 2 Existing Site Location & Information

The proposed project site, approximately 2.38-acres, is located in the City of Newport Beach, Orange County, California. The site is at the North-West corner of Bristol Street N and Spruce Street and has an existing office building structure along with a surface parking lot. The current land use is for a 2-story office complex. The site is relatively flat and drains from North to South, and is identified as Assessor Parcel Number 427-332-02. The zoning code is PC-11 and the site is enclosed by an existing parking lot to the West and North, Spruce Street to the East and Bristol Street to the South. See Figure 1 Below as well as Appendix A for project Vicinity Map Information.

Figure 1. Vicinity Map

Section 3 Proposed Site Description

The proposed project is comprised of a 6-story podium apartment building with two levels of subterranean parking. The proposed building height is approximately 80 feet. A leasing office, mailroom, fitness center, and business center will be on the ground level on the corner of Bristol and Spruce. Vehicular access to the building will be from proposed driveways on Bristol Street and on Spruce Avenue. See Figure 2 below for general site configuration.

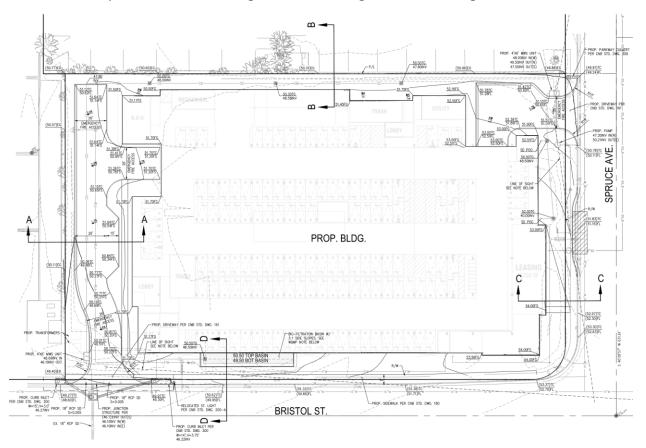


Figure 2. Proposed Site Conditions at the Project Site

Section 4 Sewer System Layout

4.1 Existing Sewer System

An existing sewer lateral off of Spruce Street connects the project site to the existing 8" VCP public sewer main. The subject public sewer main originates on Spruce Street at the existing sewer laterals, with manhole ID MHM28_019, and drains in the northeast direction to manhole MHM28_018 at Quail Street. The sewer main then increases to a 10" diameter VCP and continues to the southeast to manhole MHM28_033 located at the intersection of Qual Street and Dove Street. The sewer system maintains a 10" diameter and continues to the north to manhole MHM28_003 located at the intersection of Dove Street and Newport Place. The sewer main then increases to 15" diameter and continues to the east to Macarthur Blvd. and then to the north to MHM28_051. The sewer main then increases to an 18" diameter and continues for a short run to MHM27 to discharge in to the OCSD sewer main. See Figure 3 for a graphic representation of the existing sewer system servicing the project site.

Figure 3. Existing Sewer System at the Project Site

4.2 Proposed Sewer System

No change or extensions to the public sewer system layout is proposed as part of this project and the existing 8" VCP sewer lateral servicing the site is proposed to be re-used for the development. The only change proposed will be made for the land use of the project site from a commercial use to a residential use. The project site is currently a 2-story office complex with surface parking behind. The proposed project will redevelop the site to construct a 6 story 230unit podium building, with 5 levels of residential apartment (type III) over one level on grade parking garage, and 2 levels of sub-terranean parking (type I). The change of use for the site is anticipated to increase the rate of discharge to the system and are further detailed and justified below.

Additional proposed projects in Sewer Tributary: In addition to this project, four other developments are currently known to be planned within the same sewer tributary. The noted projects are:

- 1300 Bristol Street (193 Apartment Units)
- 1401 Qual Street (78 Apartment Units)
- 1600 Dove Street (282 Units)
- 1660 Dove/1701 Corinthian (350 Units)

This report has been prepared to consider the flow increased from each of the above noted projects and any associated sewer capacity upgrades that may be required.

Section 5 Design Criteria

5.1 Sewer Design Criteria

Design criteria utilized in this report are based on the City of Newport Beach's Sewer Master Plan (SMP) prepared by AKM Consulting Engineers (August 2010). The focus of this study is to calculate the generation rates for the existing and proposed development based on land use generation rates in order to calculate the projected ratio of flow depth versus pipe diameter (d/D).

d/D Requirements: Based on the City' SMP, existing sewer pipes are considered deficient if this ratio is greater than 0.6 at peak dry weather flows and 0.8 at peak wet weather flows.

Manning's Friction Factor: Per City's SMP requirements a Manning's friction factor of 0.013 has been utilized on all flow calculations.

Flow Generation Rates: Since water use records were unavailable to the parcels in the sewer system, a typical unit flow factor of 2,500 gallons per day per acre (gpd/ac) is utilized for the project based on the commercial use and the maps provided in the City's SMP (see Appendix D).

Peaking Factor (Dry Weather): Per the City's SMP, a peaking factor formal has been applied to the calculated daily generation rates as follows:

PDWF (mgd) = $2.20 \times ADWF$ (mgd) $^{0.92}$

See Table 1 below for a brief summary of the key design factors utilized in the report and Appendix B for a listing of the City's required design criteria for sewer systems.

Flow Depth vs Pipe Diameter Ratio (d/D)	Manning's Friction Factor (n value)	Unit Flow Factor (gpd/ac)	Peaking Factor
0.6 for all pipe sizes at peak dry weather flow	0.013	2,500	PDWF (mgd) = 2.20 x ADWF (mgd) ^{0.92}
0.8 for all pipe sizes at peak wet weather flow			2.20 × AD WI (Ingu)

Table 1. Sewer Design Criteria

5.2 Available Pipe Capacity

The available pipe capacity for each segment has been determined by identifying the minimum slope of pipe within the reach, and calculating the flows for the given pipe diameter and slope at a d/D ratio = 0.6. Pipe diameter and slopes were obtained from the City of Newport Beach GIS – Map Viewer website. Available flows were calculated utilizing the above noted design factors and the AutoCAD HydraFlow Express extension on Civil 3D for each critical pipe segment (See Appendix C). The results of the above noted calculations are included in Table 2 below.

Stream No.	MH Reach From	MH Reach To	Pipe Diameter D (in)	Pipe Diameter D (ft)	Minimum Slope in Reach (%)	Depth of Flow @ d/D=0.6 (ft)	Pipe Flow Q @ d/D = 0.6 (CFS)
1	MHM28_019	MHM28_018	8	0.67	1	0.4	0.82
2	MHM28_018	MHM28_033	10	0.83	0.26	0.5	0.75
3	MHM28_033	MHM28_003	10	0.83	0.4	0.5	0.93
4	MHM28_003	MHM28_051	15	1.25	0.2	0.75	1.95
	MHM28_051	MHM27	18	1.5	0.2	0.9	3.17

Table 2. Available Pipe Capacity of the Existing Sewer System

1400 Bristol St N Newport Beach, California Sewer Capacity Study by TAIT & Associates

5.3 Existing Flow Rates

Existing daily flow rates were calculated based on total tributary parcel acreage and the above noted generation rates. See Figure 4 below for the assumed tributaries for each sewer segment and refer to Appendix C for a listing of all Area-Based Flow Calculations

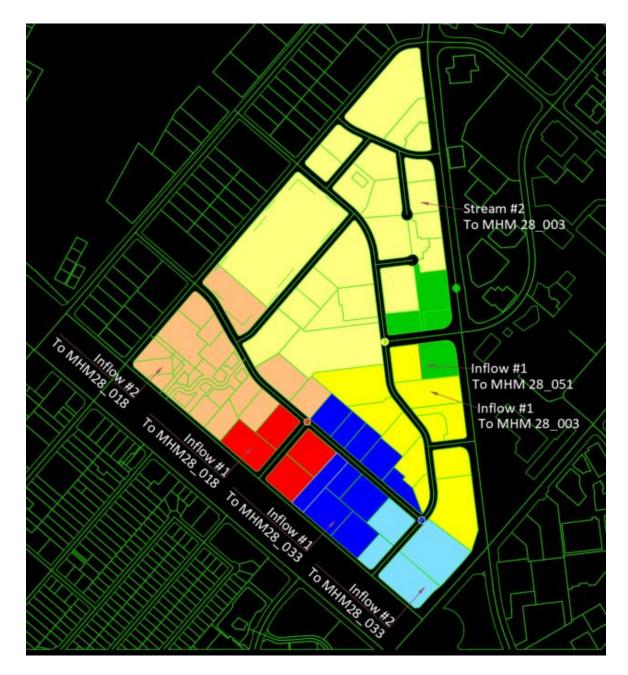


Figure 4. Existing Wastewater Flows to Important Manholes

1400 Bristol St N	Sewer Capacity Study
Newport Beach, California	by TAIT & Associates

The tributary areas generating incremental inflow along the primary system (highlighted in Figure 2) have been designated as inflow #1. Other tributary inflows that are added to the system only at the key manholes have been identified as inflow #2. The total sub area outflows for main manholes in the system are then calculated as the sum of inflow #1 and #2. The key manholes that are taken into consideration for the sewer system are identified in Table 3 below with the correlating daily flow rates for each inflow:

	EXISTING GENERATION RATES BY TRIBUTARY AREA					
	STREAM 1	STREAM 2	STREAM 3	STREAM 4		
	Sub Area Flow to MHM28_018	Sub Area Flow to MHM28_033	Sub Area Flow to MHM28_003	Sub Area Flow to MHM28_051		
Inflow #1 Areas (Ac)	7.91	14.48	20.60	6.43		
Inflow #1 Flows (gpd)	19,775.00	36,187.50	51,508.33	16,083.33		
Inflow #2 Areas (Ac)	23.96	11.19	60.10	-		
Inflow #2 Flows (gpd)	59,906.25	27,962.50	150,252.08	-		
TOTAL Sub Area Flow Generation (gpd)	79,681.3	64,150.0	201,760.4	16,083.3		

Table 3. Generation Rates by Tributary Area

The total cumulative flows for each segment have subsequently been calculated by summing the total sub-area flow generated from the up-stream manhole (as applies) with the Inflow #1 generation rates for the subject segment. Inflow #2 generation rates are subsequently added at the manhole to create the total system outflow from each manhole. See Table 4 below for a summary of total existing flows.

Table 4. Total Existing Flows at Manhole

TOTAL EXISTING AVERAGE DAILY FLOWS AT MANHOLE					
	STREAM 1	STREAM 2	STREAM 3	STREAM 4	
	Total Flow MHM28_018 (gpd)	Total Flow MHM28_033 (gpd)	Total Flow MHM28_003 (gpd)	Total Flow MHM28_051 (gpd)	
Total Existing Inflow #1	19,775.00	115,868.75	195,339.58	361,675.00	
Total Existing Inflow #2	59,906.25	27,962.50	150,252.08	-	
Total Outflow	79,681.25	143,831.25	345,591.67	361,675.00	

Given the above noted average daily flows, the average daily flow for inflow #1 of each segment (mainline flows) was converted to million gallon per day (mgd) which was subsequently used to calculate the peak dry weather flow for each segment based on the Peaking Factor Formula provided in the City's SMP [A]. The calculated peak dry weather flow [A] was then converted to cubic feet per second [B] and compared to the available pipe capacity flows [C] for the given segment (see Table 1 for reference of existing pipe capacities) to validate existing sewer system capacity [D].

TOTAL EXISTING PEAK DRY WEATHER FLOWS AT MANHOLE							
	STREAM 1	STREAM 1 STREAM 2 STREAM 3 STREAM 4					
	Total Inflow #1 to	Total Inflow #1 to	Total Inflow #1 to	Total Inflow #1 to			
	MHM28_018	MHM28_033	MHM28_003	MHM28_051			
PEAK Flow (mgd)	0.06	0.30	0.49	0.86			
[A]							
PEAK Flow (cfs)	0.09	0.47	0.76	1.34			
[A]*1.58 = [B]							
Available Flow @	0.82	0.75	0.93	1.95			
d/D = 0.6 (cfs) [C]							
Available Capacity	0.73	0.28	0.17	0.61			
(cfs) [C]-[B] = [D]							
	ОК	ОК	ОК	ОК			

Table 5. Total Peak Flows and Available Capacity

5.3 **Proposed Flow Rates**

Increase of Flow to Stream #1: The total area of the project site at 1400 Bristol St N, Newport Beach, CA is 2.38 acres. Utilizing the typical unit flow factor of 2500 gpd/ac, the existing flow at the project location is calculated as 5,950 gpd. According to the City's SMP, the residential unit flow factors range from 110 gpd/du to 240 gpd/du (see Appendix D for the City's SMP Unit Flow Factor Map). Based on a review of similar parcels within the City, a generation rate of 160 gpd/du has been selected for the subject parcel. Given the proposed 230 dwelling units, the calculated daily flow for the proposed condition is 36,800 gpd. As a result, the total increase in daily flow is calculated as the difference between the proposed flow and existing flow at the project site, being 30,850 gpd. Results of this calculation are summarized in Table 6:

In addition to this proposed development, two other proposed developments are located along Stream #1. Namely:

- 1300 Bristol Street (193 Apartment Units)
- 1401 Qual Street (78 Apartment Units)

Per the previously prepared sewer capacity study for 1300 Bristol Street by Tait Dated August 30, 2021, and the previously prepared sewer capacity study for 1401 Quail Street by others, the total increase of sewer flows from the adjacent 1300 Bristol Street and 1401 Qual St developments are as follows:

	Existing Flow at Project Site (gpd)	Proposed Flow at Project Site (gpd)	Total Increase in Flow (gpd)
Proposed Project: 1400 Bristol	5,950	36,800	30,850
Previous Project: 1300 Bristol	4,925	30,880	25,955
Previous Project (by others): 1401 Quail	4,275	12,480	8,205
TOTALS:	15,150	80,160	65,010

 Table 6. Total Daily Flow Increase at the Project Site (Flows to MHM28_018)

<u>Additional Increase of Flow to Stream #4</u>: Furthermore, two additional developments which are tributary to Stream #4 have been identified by the City. Namely:

- 1600 Dove Street (282 Units)
- 1660 Dove/1701 Corinthian (350 Units)

The total area of the project site at 1600 Dove St is 2.49 acres and is proposed for 282 future apartment units. The total area of the project sites at 1660 Dove St & 1701 Corinthian Way, is 5.68 acres and is proposed for 350 future apartment units. Utilizing the above noted typical unit flow factor of 2,500 gpd/ac for existing and 160 gpd/du for proposed, the results of the existing and proposed flow calculation are summarized in Table 7:

Table 7. Additional Daily Flow Increase to Inflow #1 to MHM28_051

	Existing Flow at Project Site (gpd)	Proposed Flow at Project Site (gpd)	Total Increase in Flow (gpd)
1600 Dove	6,225	45,120	38,895
Proposed Project (by others):	14,200	56,000	41,800
1660 Dove/1701 Corinthian			
TOTALS:	20,425	101,120	80,695

1400 Bristol St N	Sewer Capacity Study
Newport Beach, California	by TAIT & Associates

Based on the above noted total increase in daily sewer generation rates, the total system peak flows for Stream #1 & #4 were re-calculated with the additional inflow added into each stream's calculations. The results of the proposed system flows are presented in Table 8 below.

TOTAL PROPOSED DRY WEATHER FLOWS AT MANHOLE (EXISTING + DEVELOPMENT)						
	STREAM 1	STREAM 1 STREAM 2 STREAM 3 STREAM 4				
	Total Inflow #1 to MHM28_018	Total Inflow #1 to MHM28_033	Total Inflow #1 to MHM28_003	Total Inflow #1 to MHM28_051		
Total Proposed Average Daily Inflow #1 (gpd)	84,785.00	180,878.75	260,349.58	507,380.00		
PEAK Flow (mgd) [A]	0.23	0.46	0.64	1.18		
PEAK Flow (cfs) [A]*1.58 = [B]	0.35	0.71	0.99	1.82		
Available Flow @d/D = 0.6 [C]	0.82	0.75	0.93	1.95		
Available Capacity (cfs) [B]-[A] = [D]	0.47	0.04	(0.06)	0.12		
	ОК	ОК	DEFICIENT	ОК		

Table 8. Total Proposed Flows

Section 6 Results and Conclusion

Based on the above noted calculations, data, and the City's SMP design guidelines, the combined effects of the proposed redevelopment of the noted sites located along Stream #1 (1300 Bristol, 1400 Bristol, and 1401 Quail) from commercial to high density residential will result in a portion of Stream #3 falling slightly above the City's minimum design requirements for the required depth to diameter ratio.

As the total tributary along Stream #3 is large (~31 Acres) and generates a total of 0.33 cfs within itself, of which only 0.06 cfs is over capacity, the replacement of the entire stretch of pipe is not required. As a result, an equivalent area calculation was conducted to confirm the total existing tributary of commercial property that would generate the final 0.06 cfs of sewer flows within the tributary to identify the limits of pipe that will require capacity upgrades. Based on the previously noted sewer generation rate of 2,500 gpd for the existing conditions and the peak flow calculation methods indicated in Section 5.1, the total equivalent tributary area required to generate up to 0.06 cfs is approximately 5 acres of tributary land.

Required replacements are anticipated to include the removal of the existing 10" VCP and installation of a new 12" VCP sewer main between Newport Place (MHM28_003) and Manhole

1400 Bristol St N Newport Beach, California

MHM28_041 which is located approximately 435 feet south of Newport Place. See Figure 5 below for a graphic summary of the tributary area (yellow), contributing parcels for the overage (red cross hatch), and limits of sewer replacement (bold red line).



Figure 5 – Sewer Replacement Limits

As multiple developments are contributing to the overage of the give segment of pipe, it is anticipated that the cost of sewer main replacements will be shared by each development. Given that each development has varying mixes of studio through three-bedroom units, it is recommended that the cost sharing program be based on total contributing residential square footage rather than by total number of units.

Should you have any questions regarding this report, please do not hesitate to contact David Sloan at (714) 560-8643 or dsloan@tait.com.

Sewer Capacity Study by TAIT & Associates

Appendix A – Vicinity Map

Appendix A

Appendix B – Sewer Design Criteria

Sewer System Criteria

Collection System	
Minimum Pipe Size	8-inch
Minimum Velocity	2.0 ft/sec at average flow 3.0 ft/sec at peak dry weather flow
Pipe Depth to Diameter Ratio for Existing Pipes	0.60 for all pipe sizes at peak dry weather flow 0.80 for all pipe sizes at peak wet weather flow
Pipe Depth to Diameter Ratio for New Construction	0.50 for pipes 15-inches and smaller at peak dry weather flow 0.60 for pipes 18-inches and larger at peak dry weather flow 0.80 for all pipe sizes at peak wet weather flow

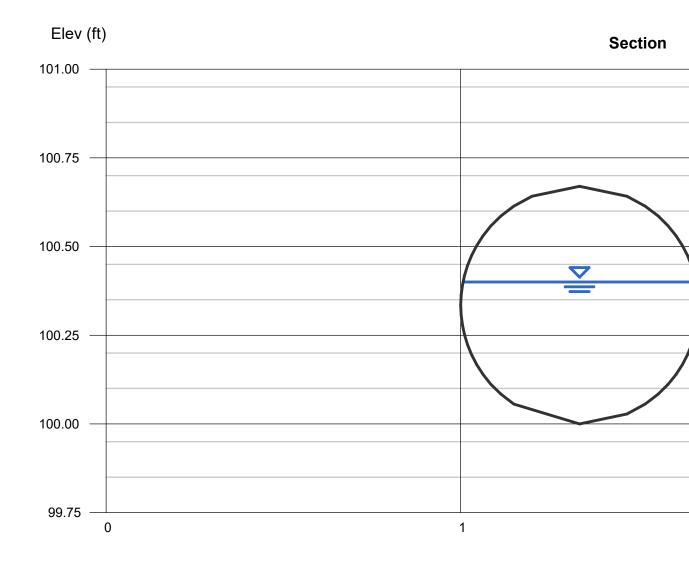
Sewer Size (in)	2 ft/sec Velocity Slope	3 ft/sec Velocity Slope
8	0.0029	0.0065
10	0.0022	0.0049
12	0.0017	0.0038
15	0.0013	0.0029
18	0.0010	0.0022
21	0.0008	0.0018
24	0.0007	0.0015

Minimum Sewer Slopes

*Assuming d/D = 0.60 and n=0.013

Appendix C – Existing Flow Calculations

Area Based Sev	were Generatoin Ra	ates (2,500 gpd/Ac)		
Parcel #	Area (acre)	Tribuary to MH	Inflow #	Flow (GPD)
1400 Bristol St	2.38	MHM28_018	#1	5,950
1300 Brsitol St	1.97	MHM28_018	#1	4,925
1401 Quail St	1.7		#1	4,250
1301 Quail St	1.85		#1	4,625
1400 Quail St	1.47		#2	3,675
1451 Quail St	0.705	 MHM28_018	#2	1,763
1451 Quail St	0.705		#2	1,763
1500 Quail St	1.586666667		#2	3,967
1500 Quail St	0.793333333	MHM28_018	#2	1,983
1501 Quail St	1.11	MHM28 018	#2	2,775
1501 Quail St	1.11	MHM28_018	#2	2,775
1701 Quail St	1.22	MHM28 018	#2	3,050
1811 Quail St	0.69	MHM28_018	#2	1,725
No Site Address	2.1525	MHM28_018	#2	5,381
3880 Birch St	1.21	MHM28_018	#2	3,025
2 Upper Newport Plaza Dr	0.18	MHM28_018	#2	450
6 Upper Newport Plaza Dr	0.76		#2	1,900
3 Upper Newport Plaza Dr	0.2	MHM28_018	#2	500
4 Upper Newport Plaza	0.54	MHM28 018	#2	1,350
6 Upper Newport Plaza Dr	0.76	MHM28_018	#2	1,900
6 Upper Newport Plaza Dr	0.76	MHM28_018	#2	1,900
7 Upper Newport Plaza Dr	0.31	MHM28_018	#2	775
6 Upper Newport Plaza Dr (Different)	0.23	MHM28_018	#2	575
3620 Birch St	0.9	MHM28_018	#2	2,250
3610 Birch St	1.13	MHM28_018	#2	2,825
3600 Birch St	0.93	MHM28_018	#2	2,325
			1	
1550 Bristol St N	0.86	MHM28_018	#2	2,150
6 Upper Newport Plaza Dr	0.18	MHM28_018	#2	450
1 Upper Newport Plaza Dr	0.21	MHM28_018	#2	525
3636 Birch St	2.38	MHM28_018	#2	5,950
1800 Quail St	0.51	MHM28_018	#2	1,275
1900 Quail St	0.37	MHM28_018	#2	925
1300 Quail St	1.5	MHM28_033	#1	3,750
1301 Quail St	1.85	MHM28_033	#1	4,625
1200 Quail St	1	MHM28_033	#1	2,500
1100 Quail St	1.15	MHM28_033	#1	2,875
1101 Quail St	1	MHM28_033	#1	2,500
1000 Bristol St	3.91	MHM28_033	#1	9,775
1000 Quail St	1.52	MHM28_033	#1	3,800
895 Dove St	1.975	MHM28_033	#1	4,938

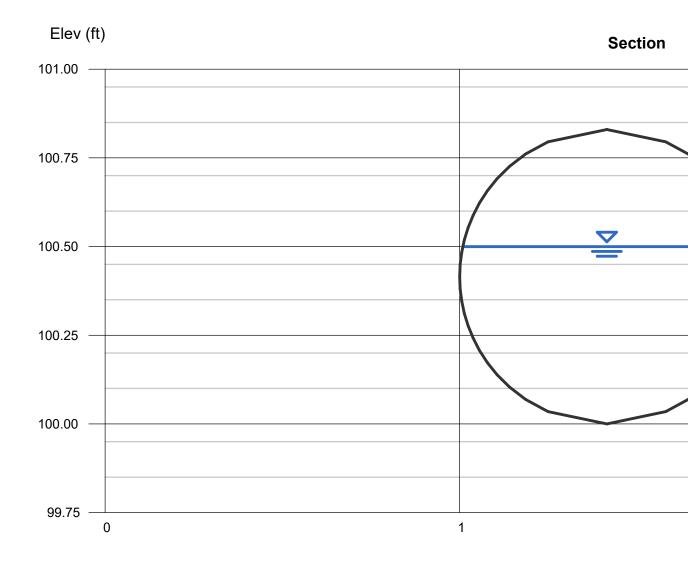

Area Based	Sewere Generatoin Ra	tes (2,500 gpd/Ac)		
Parcel #	Area (acre)	Tribuary to MH	Inflow #	Flow (GPD)
901 Dove St	0.57	MHM28 033	#1	1,425
900 Bristol St	1	MHM28_033	#2	2,500
3601 Jamboree Rd	2.87	MHM28_033	#2	7,175
895 Dove St	1.975	MHM28_033	#2	4,938
3901 McArthur Blvd	2.67	MHM28_033	#2	6,675
3901 McArthur Blvd	2.67	MHM28_033	#2	6,675
3901 McArthur Blvd	2.67	MHM28_003	#1	6,675
901 Dove St	0.57	MHM28_003	#1	1,425
901 Dove St	0.57	MHM28_003	#1	1,425
3991 McArthur Blvd	0.83	MHM28_003	#1	2,075
1001 Dove St	1.51	MHM28_003	#1	3,775
1101 Dove St	1.49	MHM28_003	#1	3,725
1000 Dove St	0.9	MHM28_003	#1	2,250
1151 Dove St	1.75	MHM28_003	#1	4,375
1201 Dove St	1.795	MHM28_003	#1	4,488
1201 Dove St	1.795	MHM28_003	#1	4,488
1200 Dove St	2.166666667	MHM28_003	#1	5,417
1200 Dove St	2.166666667	MHM28_003	#1	5,417
3991 McArthur Blvd	0.83	MHM28_003	#1	2,075
1050 Dove St	1.56	MHM28_003	#1	3,900
1401 Dove St	1.92	MHM28_003	#2	4,800
1301 Dove St	6.46	MHM28_003	#2	16,150
4100 Newport Place Dr	1.246666667	MHM28_003	#2	3,117
4241 McArthur Blvd	0.72	MHM28_003	#2	1,800
4221 McArthur Blvd	1.1	MHM28_003	#2	2,750
1600 Dove St	0.83	MHM28_003	#2	2,075
4100 Newport Place Dr	1.246666667	MHM28_003	#2	3,117
1601 Dove St	0.9975	MHM28_003	#2	2,494
1601 Dove St	0.9975	MHM28_003	#2	2,494
1600 Dove St	0.83	MHM28_003	#2	2,075
1601 Dove St	0.9975	MHM28_003	#2	2,494
1601 Dove St	0.9975	MHM28_003	#2	2,494
No Site Address	2.1525	MHM28_003	#2	5,381
4000 Westerly Pl	1.46	MHM28_003	#2	3,650
No Site Address	2.1525	MHM28_003	#2	5,381
3990 Westerly Pl	1.46	MHM28_003	#2	3,650
1500 Quail St	1.586666667	MHM28_003	#2	3,967
1500 Quail St	0.793333333	MHM28_003	#2	1,983
1660 Dove St 014	0.855	MHM28_003	#2	2,138

Area Based S	Sewere Generatoin Ra	ates (2,500 gpd/Ac)		
Parcel #	Area (acre)	Tribuary to MH	Inflow #	Flow (GPD)
No Site Address	2.1525	MHM28_003	#2	5,381
4200 Birch St	0.6	MHM28_003	#2	1,500
4200 Birch St	0.6	MHM28_003	#2	1,500
1660 Dove St 014	0.855	MHM28_003	#2	2,138
4250 Birch St	0.7	MHM28_003	#2	1,750
4250 Birch St	0.7	MHM28_003	#2	1,750
1600 Dove St	0.83	MHM28_003	#2	2,075
4251 McArthur Blvd	1.08	MHM28_003	#2	2,700
4229 McArthur Blvd	1.45	MHM28_003	#2	3,625
1660 Dove St	1.94	MHM28_003	#2	4,850
1701 Corinthian Way	1.83	MHM28_003	#2	4,575
4301 McArthur Blvd	0.5	MHM28_003	#2	1,250
4301 McArthur Blvd	0.5	MHM28_003	#2	1,250
4341 McArthur Blvd	0.94	MHM28_003	#2	2,350
4343 McArthur BLvd	1	MHM28_003	#2	2,500
4545 McArthur Blvd	3.16	MHM28_003	#2	7,900
4545 McArthur Blvd	3.16	MHM28_003	#2	7,900
		_		
1375 Dove St	1.68	MHM28_003	#2	4,200
1660 Dove St St140 (D)	0.2	MHM28_003	#2	500
3901 Westerly Pl	0.64	MHM28_003	#2	1,600
3919 Westerly Pl	0.37	MHM28_003	#2	925
3900 Birch St	0.97	MHM28_003	#2	2,425
4000 Birch St	0.52	MHM28_003	#2	1,300
4001 Westerly Pl	0.86	MHM28_003	#2	2,150
4020 Birch St	0.72	MHM28_003	#2	1,800
4029 Westerly Pl	0.52	MHM28_003	#2	1,300
4100 Birch St	0.38	MHM28_003	#2	950
4120 Birch St	0.58	MHM28_003	#2	1,450
4101 Westerly Pl	0.97	MHM28_003	#2	2,425
1901 Dove St	0.51	MHM28_003	#2	1,275
1801 Dove St	0.38	MHM28_003	#2	950
		_		
4100 Newport Place Dr	1.246666667	MHM28_051	#1	3,117
1200 Dove St	2.166666667	 MHM28_051	#1	5,417
4141 McArthur Blvd	2.23	MHM28_051	#1	5,575
4101 McArthur Blvd	0.79	MHM28 051	#1	1,975

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

8 IN VCP @ 1% Slope

Circular		Highlighted	
Diameter (ft)	= 0.67	Depth (ft)	= 0.40
		Q (cfs)	= 0.820
		Area (sqft)	= 0.22
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.72
Slope (%)	= 1.00	Wetted Perim (ft)	= 1.19
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.43
		Top Width (ft)	= 0.66
Calculations		EGL (ft)	= 0.62
Compute by:	Known Depth		
Known Depth (ft)	= 0.40		

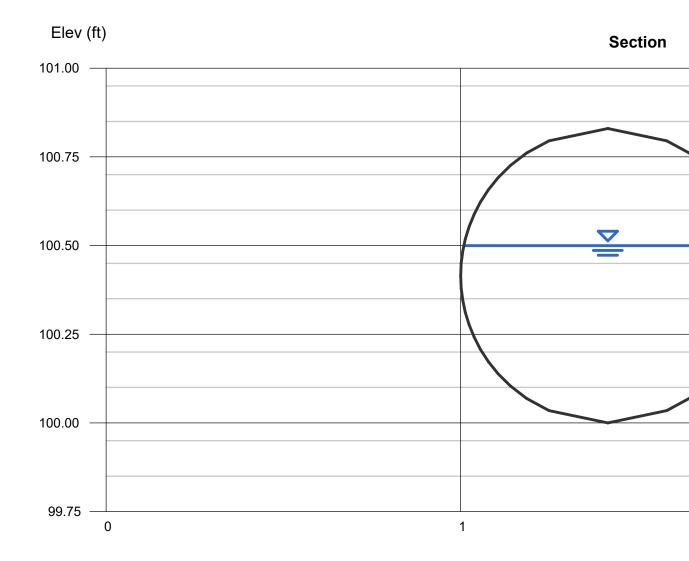


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Sunday, Sep 26 2021

10 IN VCP @ 0.26% Slope

Circular		Highlighted	
Diameter (ft)	= 0.83	Depth (ft)	= 0.50
		Q (cfs)	= 0.749
		Area (sqft)	= 0.34
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.19
Slope (%)	= 0.26	Wetted Perim (ft)	= 1.48
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.39
		Top Width (ft)	= 0.81
Calculations		EGL (ft)	= 0.57
Compute by:	Known Depth		
Known Depth (ft)	= 0.50		

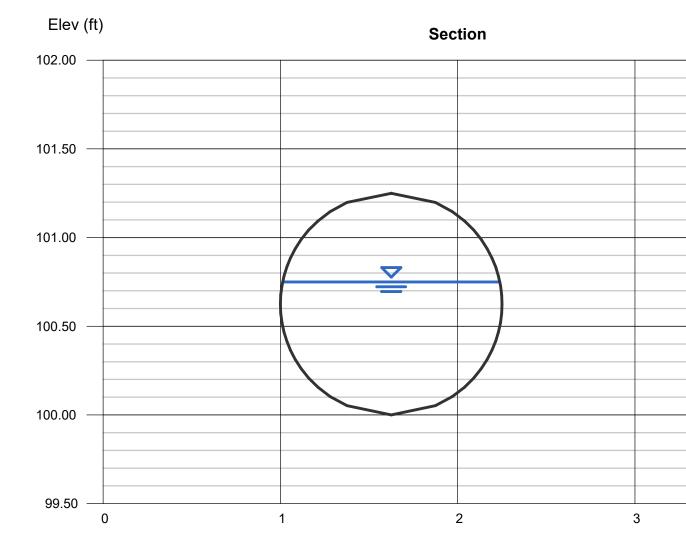


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Sunday, Sep 26 2021

10 IN VCP @ 0.4% Slope

Circular		Highlighted	
Diameter (ft)	= 0.83	Depth (ft)	= 0.50
		Q (cfs)	= 0.930
		Area (sqft)	= 0.34
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.72
Slope (%)	= 0.40	Wetted Perim (ft)	= 1.48
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.43
		Top Width (ft)	= 0.81
Calculations		EGL (ft)	= 0.62
Compute by:	Known Depth		
Known Depth (ft)	= 0.50		

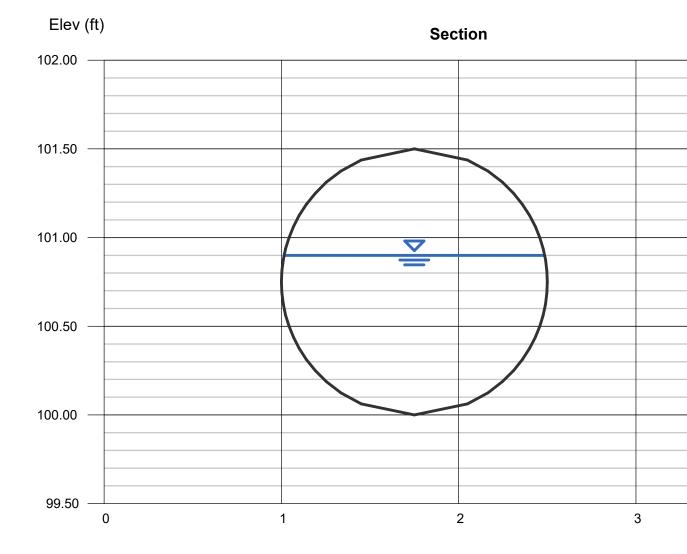


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Sunday, Sep 26 2021

15 IN VCP @ 0.2% Slope

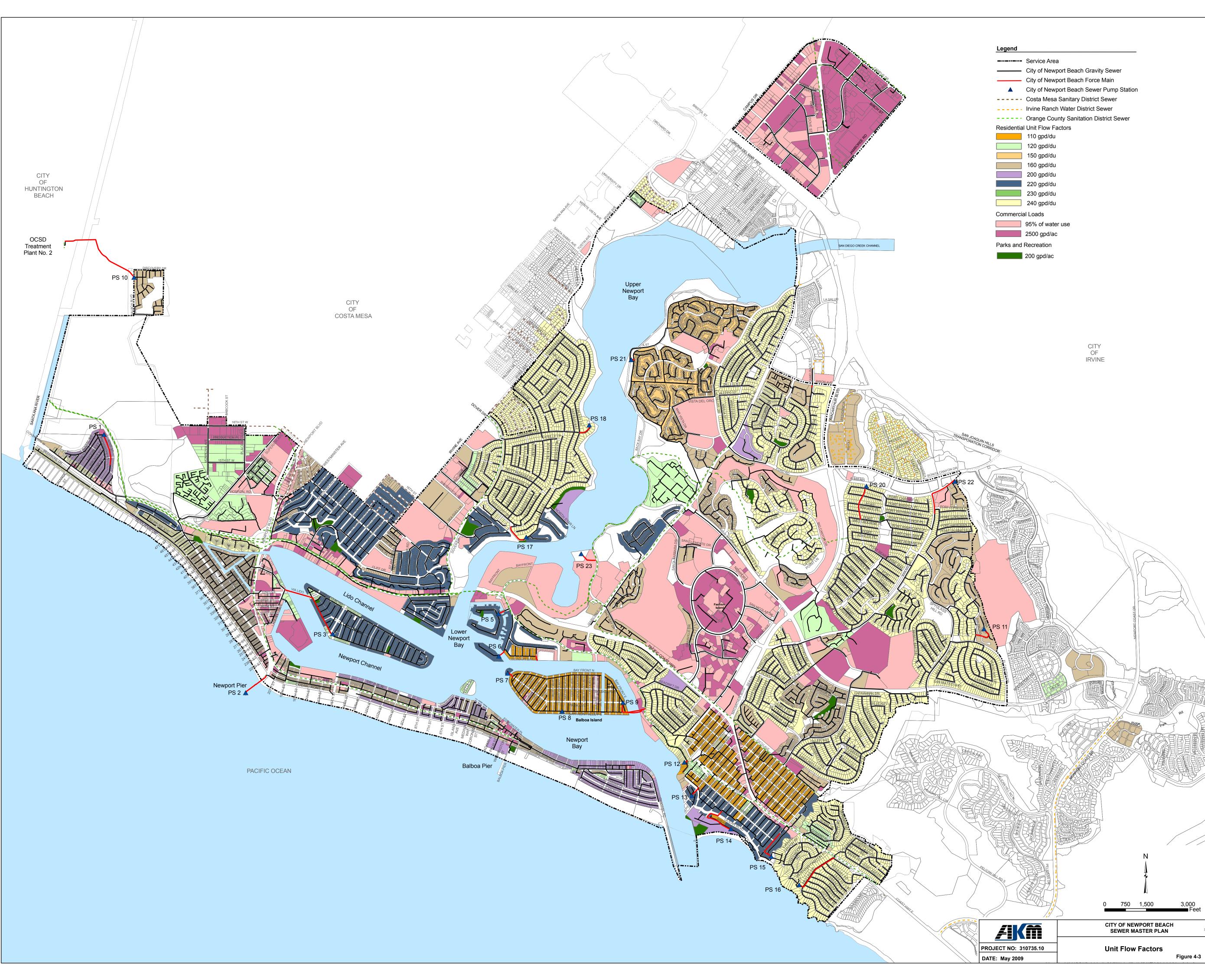
Circular		Highlighted	
Diameter (ft)	= 1.25	Depth (ft)	= 0.75
		Q (cfs)	= 1.947
		Area (sqft)	= 0.77
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.53
Slope (%)	= 0.20	Wetted Perim (ft)	= 2.22
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.56
		Top Width (ft)	= 1.22
Calculations		EGL (ft)	= 0.85
Compute by:	Known Depth		
Known Depth (ft)	= 0.75		



Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Sunday, Sep 26 2021

18 IN VCP @ 0.2% Slope


Circular		Highlighted	
Diameter (ft)	= 1.50	Depth (ft)	= 0.90
		Q (cfs)	= 3.166
		Area (sqft)	= 1.11
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.85
Slope (%)	= 0.20	Wetted Perim (ft)	= 2.66
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.68
		Top Width (ft)	= 1.47
Calculations		EGL (ft)	= 1.03
Compute by:	Known Depth		
Known Depth (ft)	= 0.90		

Appendix D – City of Newport Beach SMP Exhibits

 City Boundary
 Service Area Boundary
Commercial
General Industrial
Mixed Use Horizontal
Mixed Use Vertical and Water Related
Open Space
Public Facilities
Private Institutions
Parks and Recreations
Multiple Unit Residential
Single Unit Residential Attached
Single Unit Residential Detached
Two Unit Residential
Tideland and Submerged Lands

